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ABSTRACT. Kazemi (2014) introduced a new version of bucket recursive
trees as another generalization of recursive trees where buckets have vari-
able capacities. In this paper, we get the p-th factorial moments of the
random variable S, 1 which counts the number of subtrees size-1 profile
(leaves) and shows a phase change of this random variable. These can
be obtained by solving a first order partial differential equation for the

generating function correspond to this quantity.
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1. INTRODUCTION

Trees are defined as connected graphs without cycles, and their properties
are basics of graph theory. For example, a connected graph is a tree, if and
only if the number of edges equals the number of nodes minus 1. Furthermore,
each pair of nodes is connected by a unique path [1]. A rooted tree is a tree
with a countable number of nodes, in which a particular node is distinguished
from the others and called the root node [32].

The node profile is defined as the number of nodes at distance k from the root
in a tree. Several studies have been concerned on this quantity; for random
binary search trees and recursive trees see [4, 5, 9, 10] and [19]; for random
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plane-oriented recursive trees see [20]; for other types of random trees see [8,
11, 12, 30] and [26].

There is another kind of profile which is defined as the number of subtrees
of size k. This kind is called subtree size profile and has been investigated for
random binary search trees, random recursive trees and random Catalan trees;
see [3, 6, 13, 14, 15] and [18].

This kind of profile is an important tree characteristic carrying a lot of
information on the shape of a tree. For instance, total path length (sum of
distances of all nodes to the root) and Wiener index (sum of distances between
all nodes) can be easily computed from the subtree size profile [17]. Also,
studying patterns in random trees is an important issue with many applications
in computer science (see [7] and [16]) and mathematical biology (see [3] and
31)).

Meir and Moon [28] defined recursive trees as the variety of non-plane in-
creasing trees [2] such that all node degrees are allowed. In this model, the
capacity of nodes is 1 [21]. Mahmoud and Smythe [29] introduced bucket re-
cursive trees as a generalization of random recursive trees where the capacity of
buckets is fixed. In this paper, we will consider another bucket recursive trees,
i.e., bucket recursive trees with variable capacities of buckets that introduced
by Kazemi (2014). He studied the following random variables in this model:
the depth of the largest label [23], the first Zagreb index [22], the eccentric
connectivity index [24] and the branches [25]. Also, Kazemi and Haji showed
a phase change in the distribution in these models [27]. Our results for b = 1
reduce to the previous results for random recursive trees [13, 14]. We define
the tree below for the reader’s convenience [23].

Definition 1.1. A size-n bucket recursive tree T,, with variable bucket capac-
ities and maximal bucket size b starts with the root labeled by 1. The tree
grows by progressive attraction of increasing integer labels:

when inserting label j + 1 into an existing bucket recursive tree T}, except the
labels in the non-leaf nodes with capacity < b all labels in the tree (containing
label 1) compete to attract the label j + 1. For the root node and nodes with
capacity b, we always produce a new node j 4+ 1. But for a leaf with capacity
¢ < b, either the label j + 1 is attached to this leaf as a new bucket containing
only the label j 4+ 1 or is added to that leaf and make a node with capacity
¢+ 1. This process ends with inserting the label n (i.e., the largest label) in
the tree.

By definition, a node v with capacity ¢(v) < b has the out-degree 0 or 1. In
Figure 1, we diagrammatically show the step-by-step growth of a tree of size 11
with b = 2. We consider the random variable S, , which counts the number
of buckets that are the root of a subtree of T;, with size k. More precisely, we
study the subtree size profile S, 1 in our model (=leaves).


http://dx.doi.org/10.7508/ijmsi.2016.01.001
https://ijmsi.ir/article-1-381-en.html

[ Downloaded from ijmsi.ir on 2026-02-16 ]

[ DOI: 10.7508/ijmsi.2016.01.001 ]

The Subtree Size Profile of Bucket Recursive Trees 3

OO 0 &

23] (213] (2[3]) [5) 23] L&Js
4 (4 2
1 1 1
23] [s]e 2[3] [s]s 2[3] [s]e
@ [z] al [7] [s @7 8|9
1 1
2[3] [s]e 2[3] [s]e
2] [7] (8]o 4] [7] (8]

FIGURE 1. The step-by-step growth of a tree of size n = 11
with maximal bucket size b = 2.

2. PARTIAL DIFFERENTIAL EQUATION

A class T of a family of bucket-increasing trees can be defined in the following
way (see [23, Section 2] for details). A sequence of non-negative numbers
(o) k>0 with ap > 0 and a sequence of non-negative numbers 81, B2, - , Bp—1
are used to define the weight w(T') of any ordered tree T by w(T') = IL,w(v),

where
v is the root or ¢(v) = b

_ Ad(v),

w(v) = { Buys  c(v) < b (2.1)
and d(v) denotes the out-degree of node v. Let L(T) be the set of different
increasing labelings of the tree T with distinct integers {1,2, ..., |T'|} (].| denotes
the size of sets). Then the family 7 consists of all trees T together with
their weights w(T") and the set of increasing labelings £(T'). We define the
exponential generating function

> prg
Tn’b(z) = Z Tn,bmv (2'2)
n=1 ’
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where Ty, p 1= 37—, w(T') - L(T) is the total weights and L(T) := [L(T)|. If
r is the out-degree of the root node, then

— DI(pNPA—20 =1 [PrD)
Tn,b = (n ) ( ) b : , N2> 17b >1, (23)
where Py, is the set of all trees of size k; and T), ,(0) = 0 [23]. Let Si(z,u) be
the moment generating function

Sk(zvu) = Z Z ]P)(Sn»k

n>1m>0

n

z
m)Tn,b—'um
n!

NPA=S1 [Px,]) on
S5 B(Suk=m) () ; %um. (2.4)

n>1m>0

According to the definition of the tree, the probabilities of P(S,, , = m) satisfy
(n; >1,m; >0and n > k)

*

1 TI,_]. nl,b...T:r’b
P(Sn,k = m) = ZF Z ( N1y eeey Ny ) W

r>1" " nitetnyg=n—1 ’

X Z P(Snl,k = ml) e 'P(Snr,k = mr)7 (25)
mi+--+mer=m
with initial values P(Skr = 1) = 1, P(Sp, = 0) = 1 for 1 < n < k where
Ty, is the total weights of the ith subtree. Thus recurrence (2.5) leads to the
following functional equation [23]

%Sk(z,u) = b~ 2i=1 [P (es’“(z’“) + (u — 1)2’@*1) , (k>1) (2.6)
with initial condition Sk(0,u) = 0.

For b =1, i.e., random recursive trees, Feng, et al. obtained a limit theorem
for the subtree size profile by considering both & fixed and k = k(n) dependent
on n. Using analytic methods they characterized for the tree the phase change
behavior of Sy, i [14].

For b > 1, there is no unique solution of (2.6) for all k. Suppose B(r,b) =
bl~ 2i=1 1Pkl Then

1 1
=1 —HumDAmb) (4~ ) — . 2.
S1(z ) og(e ( +u—1) u—1 27)
3. PRELIMINARIES
We can rewrite S(z,u) as follows:
$i(m) =1 1 + (u—1)26(r,) (31)
1(z,u) = log N _foz DR u— 1)zp(r,b). .
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Set y=u—1and B(r,n,b) =b~

SN P(Sn =m)B(r,n, b) (1 + )™

81(27 1 + y)

L(ph)yn(=2i=1 [P D) Thus

n>1m>0

= Y Y RS = m)Brn, b

n>1m>0 p=0

P!’

where mE =m(m —1)---(m —p+ 1). Hence

E(Ss 1) =B(r,n,b)” Lnp![2"yP)S1 (2,1 + ),

where [2"]f(z) denote the operation of extracting the coefficient of z™ in the
formal power series f(z) = > fn,2". Also

log (

eyB (r,b tdt)

- log<1 [

r,b
. (twg' 07 dt)

J (r,b))7
sz>1 Yy (2B(r,b))7

(J+D)!
1
= logo— +log s VI B
=152 Yo =G
Forp>1
1
[y”]log 5 :
2 (28(r,b))I
1- 11—z ijl . (G+1)!

- hﬂzi(ljz) Zy] 26+T1b

j>1

_ zp:(w(f,b))p (1i ) > !

J1tFji=p,ge>1 Hk:l(Jk + 1)!

Set

= 1.,2(25(?@)?<1fz>i Y T )

intetgiapges1 k=1 Uk +1

1, if Ais true
0, otherwise.
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From (3.1),

[yP]S1(2, 1 +y)

1< zﬁ (r, b 2\’

a2 ()
S )

x . Z_ . H;@:l(jk’ + 1) <j1a "'aji

Jit-+ji=p,jg>1

+ 28(r,b)I(p=1). (3.2)

4. MAIN RESULTS

Theorem 4.1. Let 3(r,b) = bl~ Xi=1IPxil and B(r,n,b) = b= (b)) (1= 2iz1 [Pri D),
Then

Tl n=1
wam>{sgab (1)
55(£,n,?7)7 n=>2
and forp > 2,
E(SZ,) = np(r,n,b) 1i6 n-p-l Iln>p+1)
n,1 P i—1 Zp

X

1
> z( b ) (4.2)
jitetgiapgazt =1 Uk 1) AL Ji

Let s(m,n) be the mth Stirling number of order n (of the second kind).
Then in view of the classical relation

SP )= Zs(p,i)E(Sil).

i=1
Thus we can get closed formulas for ordinary p-th moments.

We use the notations — and —— to denote convergence in distribution and
in probability, respectively. The standard random variable Poi(\) and N(u, 0?)
appear in the following theorem for the Poisson distributed with parameter
2. respectively.
These random variables appear in the results as limiting random variables.

A > 0 and the normal distributed with mean p and variance o

Theorem 4.2. Let S, 1 be the subtree size-1 profile in size-n bucket recursive
trees with variable capacities of buckets. Then

i)
P ﬁ(r,n,b)
Sp1 — 0, as 7716(7", ) — 00.
i)
1 B(r,n,b)
Sn1—>P01(62>,a8 W—)C>O,
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and otherwise no limiting distribution exists for Sy 1.

iii)
Sn,l _ n _B(rb) b
230 _ D, (g, 1), as 400 g,
6nB(r,b)—5nB(r,b)? nﬂ(r, b)

123(r,n,b)

5. PROOFS

Proof of Theorem 4.1. The formula (3.2) immediately gives

E(Sn,l) _ ”5(T7n,b)_1[zn](2’5(r,b)+B(g’b)liz)
= nB(r,n,b)"" <5(r, b)I(n=1)+ @I(n > 2))
B o B
B B(r,n,b)l( b+ 2 ﬁ(r,n’b)I( > 2).
For p > 2,
IE(S%J) = B(r,n,b) 'np![z"y*]S1 (2,1 +v)

p r p Zp+i
_ nﬁ(r,’Il,b)_l[zn]Zﬁ( ;b) (172)1

x > H;£M+Uchiﬁ>

Jite+ji=p,je>1

1—1

_ nMnnﬁ)IE:ﬁwfw<np1)Hn2p+1)

X Z l_ﬁ_l(lﬂﬁl)<j1,.l.).7ji).

Jit-4ji=p,jg>1

Corollary 5.1. Forp=2,

E(S2)) = E(S,1(Sp1—1)=n

1 Br,n,b) 3 4
For b =1,

1 n=1

E(Sn,l):{ ’
%, n>2

and

E(S2 )—24,@ n>3
n,1l _3 4 ) el

5@@2(1 n—3

>,n23.

that are the same results for the (ordinary) recursive trees [14].
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Proof of Theorem 4.2. Suppose ,g(é(:f?) — A > 0. Thus from Theorem 4.1,
E(S,.1) — 2. Tt is obvious that

Z (,, 7 ) = — 1 < pllarless = v
Jite o tii=p,ie>1 >

1) For p > 2

E(S5.) = nB(rnb)7" Z M(n e 1)

. z m(ﬁpg)

Jit+ji=p,je21
i—1
iD

nB(r,n, )_1ZML

7!

IN
3
3
>

i=1

IA
»
8
=

hS]
3&
i
i

IN
¥

o1 nB(r,b) ox nB(r,b)
- p B(r,n,b) p<,6’(r,n,b)>

since p > ¢ > 1. By assumption gg,(:;’?) — 0. Then for all p > 1, E(S%l) — 0.
i.e., the random variable S, 1 convergent to a degenerate distribution at point
0.

i1) From Theorem 4.1, E(S%l) = A+ B, where

p—1
nB(r,b)? (np1> 1 < P )
A= ) . R
; i8(r,n,b) i—1 Z [Ty (G + 1) \J1s o5 Ji

Jit+ji=p,jq=>1

and

B - nB(r,b)? (n—p— 1\ p!
N pﬁ(r,n,b)( p—1 )21’

nB(r,b) \? 1
(s50m) (+o(5))
With the same technic of Part (4),

1 [ B(rb) nB(rb)
A<y B(r,n,b) B(r,n,b) < rnb)

AZO( ﬁim) o)

Thus


http://dx.doi.org/10.7508/ijmsi.2016.01.001
https://ijmsi.ir/article-1-381-en.html

[ Downloaded from ijmsi.ir on 2026-02-16 ]

[ DOI: 10.7508/ijmsi.2016.01.001 ]

The Subtree Size Profile of Bucket Recursive Trees 9

nB(r,b)
B(r,n,b)

— A. Finally for every p > 1,

b) \” 1 A\

E(SZ ) = % o — 2

(Sir) (26(r,n,b) + vn 2

Now, if we use the substitution ¢ = \/g, then /29 o ¢ and this proves

npB(r,b)
the Part (i). B
iii) Let S,1 = Sp1 — E(Sp1) and Si(z,s) = don>1 E(eS"J)%. Then

since

n
? — _]E(Sn‘l)sE Sn,ls i
1(215) = 3 B E(eS00)

n>1

From (2.4) and initial conditions of (2.5),

_ sB(rb) s _ sB(r,b) s
Si(e” v z e®) = B(r,n,ble” b ze

_ _sB(m,b) n
(e ety Z)
T DD D JCAT | —

n>2m2>0 n
By (4.1),
Si(z,5) = e EGsg(eSiasy,
—E(Sn,1)s Sn,18 i
+ Z e E(e ) -
n>2
= 95 (e_ ZZ?f'T;fz?) z, es)
+ (e(kﬁ)s - B(r,n, b)(f%Jrs) z.
Now by (3.1) and just similar to [13] proof is completed. O

Corollary 5.2. The Theorem 4.2 for b =1 reduce to the previous results for
random recursive trees [13].
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