Difference Labeling and Decomposition

\author{
H. Shanmuga Priya ${ }^{a *}$, A. Anitha ${ }^{b}$, I. Sahul Hamid ${ }^{c}$
 ${ }^{a}$ Department of Mathematics, Fatima College, Madurai - 18, India
 ${ }^{b}$ Department of Mathematics, Thiagarajar College of Engineering, Madurai - 15, India
 ${ }^{c}$ Department of Mathematics, The Madura College, Madurai - 11, India
 ```
E-mail: shanlimithun@gmail.com
 E-mail: anithavalli@tce.edu
 E-mail: sahulmat@yahoo.co.in

```
}

\begin{abstract}
A difference labeling of a graph \(G\) is an injective function \(f: V(G) \rightarrow N \cup\{0\}\) together with the weight function \(f^{*}\) on \(E(G)\) given by \(f^{*}(u v)=|f(u)-f(v)|\) for every edge \(u v\) in \(G\). The collection of subgraphs induced by the edges of the same weight is a decomposition of \(G\) and is called the common weight decomposition of \(G\) induced by \(f\). Let \(\psi_{f}\) denote the collection of all the paths taken from each member of the common weight decomposition induced by \(f\). A difference labeling \(f\) of \(G\) is said to be a graphoidal difference labeling if \(\psi_{f}\) is an acyclic graphoidal decomposition of \(G\). This paper initiates a study on this concepts.
\end{abstract}

Keywords: Decomposition, Graphoidal difference labeling.
2000 Mathematics subject classification: 05C78.

\section*{1. Introduction}

By a graph \(G=(V, E)\) we mean a non-trivial, finite, connected and undirected graph without loops or multiple edges. For terms not defined here,

\footnotetext{
*Corresponding Author
Received 03 July 2019; Accepted 02 December 2022
© 2023 Academic Center for Education, Culture and Research TMU
}
we refer to [7]. Throughout the paper the order and size of \(G\) are denoted by \(m\) and \(n\) respectively.

A decomposition of a graph \(G\) is a collection of its subgraphs such that every edge of \(G\) lies in exactly one member of the collection. Various types of decompositions have been introduced and studied by imposing conditions on the members of the decomposition. For instance, Harary introduced the notion of path decomposition [8] which demands each member of a decomposition to be a path. Following Harary, several variations of decomposition have been introduced and extensively studied. Unrestricted path decompositions [9], geodesic path decompositions[5] and simple path decompositions[2] are some variations of decomposition. In this direction Acharya and Sampathkumar[1] introduced the concept of graphoidal decomposition of a graph. A graphoidal decomposition of a graph \(G\) is a decomposition \(\psi\) of \(G\) all of whose members are paths or cycles such that every vertex of \(G\) is an internal vertex of at most one member of \(\psi\). A graphoidal decomposition wherein no member is a cycle is called an acyclic graphoidal decomposition which was introduced by Arumugam and Suresh Suseela [4]. The minimum cardinality of an acyclic graphoidal decomposition of a graph \(G\) is called the acyclic graphoidal decomposition number and is denoted by \(\eta_{a}(G)\).


Figure 1. An example of difference labeling.
The concept of difference labeling was introduced by Bloom and Ruiz [6]. A difference labeling of a graph \(G\) is an injective function \(f: V(G) \rightarrow N \cup\{0\}\) together with the weight function \(f^{*}\) on \(E(G)\) given by \(f^{*}(u v)=|f(u)-f(v)|\) for every edge \(u v\) in \(G\). Let us denote the weight \(f^{*}(u v)\) of the edge \(u v\) by \(w_{f}(u v)\). Certainly, the collection of subgraphs induced by the edges with the same weight is a decomposition of \(G\); this is called the common weight decomposition of \(G\) induced by \(f\). For example, for the graph \(G\) given in Figure 1(a), consider the difference labeling \(f: V(G) \rightarrow N \cup\{0\}\) defined by \(f\left(v_{i}\right)=\operatorname{deg}\left(v_{i}\right)\), for all \(i=1,2,3,4\). Then, the common weight decomposition \(\psi_{f}\) of \(G\) induced by \(f\) is given by \(\psi_{f}=\left\{\left(v_{1}, v_{2}, v_{3}\right),\left(v_{1}, v_{3}\right),\left(v_{2}, v_{4}\right)\right\}\). Now, consider the graph
\(G\) given in Figure \(1(b)\) together with a difference labeling \(f\) on \(V(G)\) defined by \(f\left(v_{i}\right)=\sum_{w \in V(G)} d\left(v_{i}, w\right)\), where \(d\left(v_{i}, w\right)\) denotes the distance between vertices \(v_{i}\) and \(w\). Then, the collection \(\psi_{f}\) associated with this labeling is given by \(\psi_{f}=\left\{\left(v_{1}, v_{2}, v_{3}\right),\left(v_{1}, v_{3}\right),\left(v_{4}, v_{2}, v_{5}\right)\right\}\).

Several graph theoretic concepts have been emerged by interrelating different areas in graph theory. For example, the notion of graphoidal labeling is derived by combining the major areas decompositions and labelings of graphs(For details on graphoidal labeling one can refer to [1], [3], [11] and [12]). A similar study has been carried out in [10] where the notion of acyclic graphoidal decomposition is linked with difference labeling. In this direction of research, this paper introduces the concept of graphoidal difference labeling.

We need the following theorems which provide the \(\eta_{a}\)-value for trees and complete bipartite graphs.

Definition 1.1. Let \(\psi\) be a collection of internally disjoint paths in \(G\). A vertex of \(G\) is said to ba an interior vertex of \(\psi\) if it is an internal vertex of a path in \(\psi\). Any vertex which is not an interior vertex of \(\psi\) is said to be an exterior vertex of \(\psi\).

Theorem 1.2. [4] If there exists a acyclic graphoidal decomposition \(\psi\) of a graph \(G\) such that every vertex of \(G\) with degree at least two is interior to \(\psi\), then \(\psi\) is a minimum acyclic graphoidal decomposition of \(G\).

Theorem 1.3. [4] For a tree \(T, \eta_{a}(T)=n-1\), where \(n\) is the number of pendant vertices in \(T\).

Theorem 1.4. [4] For a complete bipartite graph \(K_{r, s}\),
(i) \(\eta_{a}\left(K_{1,1}\right)=1, \eta_{a}\left(K_{1, s}\right)=s-1\), for all \(s \geq 2\).
(ii) \(\eta_{a}\left(K_{2,2}\right)=2, \eta_{a}\left(K_{2, s}\right)=s-1\), for all \(s \geq 3\).
(iii) \(\eta_{a}\left(K_{r, s}\right)=r s-r-s\), if \(r, s>2\).

\section*{2. Difference graphoidal Labeling}

Bloom and Ruiz [6] proved that each member of a common weight decomposition of \(G\) induced by a difference labeling of \(G\) is a linear forest. That is, if \(\psi_{f}\) denotes the collection of all the paths taken from each member of the common weight decomposition induced by \(f\), then \(\psi_{f}\) is an acyclic path decomposition of \(G\). However this acyclic path decomposition \(\psi_{f}\) do not need to be an acyclic graphoidal decomposition of \(G\).

For example, for the graph given in Figure 2, consider the difference labeling \(f: V(G) \rightarrow N \cup\{0\}\) defined by \(f\left(v_{i}\right)=2 i\), for all \(i=1,2, \ldots, 6, f\left(v_{7}\right)=1\), \(f\left(v_{8}\right)=7, f\left(v_{9}\right)=15\) and \(f\left(v_{10}\right)=20\). Then, the collection \(\psi_{f}\) is given by \(\psi_{f}=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right),\left(v_{7}, v_{2}, v_{8}, v_{5}\right),\left(v_{5}, v_{9}, v_{10}\right)\right\}\). As, the vertex \(v_{2}\) is an internal vertex of the paths \(\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)\) and \(\left(v_{7}, v_{2}, v_{8}, v_{5}\right), \psi_{f}\) is
not an acyclic graphoidal decomposition of \(G\). Motivated by this observation we introduce the concept of graphoidal difference labeling of a graph which is defined as follows.


Figure 2. A graph \(G\).

Definition 2.1. A difference labeling \(f\) of a graph \(G\) is said to be a graphoidal difference labeling \((\mathcal{G D} \mathcal{L})\) if \(\psi_{f}\) is an acyclic graphoidal decomposition of \(G\) and if \(G\) admits such a labeling \(f\), then \(G\) is called a difference label graphoidal graph. When \(f\) is a \(\mathcal{G D} \mathcal{L}\), the collection \(\psi_{f}\) is called the difference label graphoidal decomposition \((\mathcal{D} \mathcal{L G D})\) induced by \(f\).

Example 2.2. A graph \(G\) together with a difference labeling \(f\) on \(V(G)\) defined by \(f\left(v_{i}\right)=i\), for all \(i=1,2, \ldots, 6\) and \(f\left(v_{7}\right)=8\) is given in Figure 3(a). The collection \(\psi_{f}\) associated with this labeling is given by \(\psi_{f}=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}\right),\left(v_{5}, v_{2}\right)\right.\), \(\left.\left(v_{2}, v_{6}\right),\left(v_{3}, v_{7}\right)\right\}\). Certainly \(\psi_{f}\) is an acyclic graphoidal decomposition of \(G\). So,


Figure 3. (a): An example of \(\mathcal{G D} \mathcal{L}\). (b): A difference labeling that is not a \(\mathcal{G D} \mathcal{L}\).
the difference labeling \(f\) of \(G\) is a \(\mathcal{G D} \mathcal{L}\) of \(G\). Now, for the same graph \(G\), consider the difference labeling \(f_{1}\) defined by \(f_{1}\left(v_{i}\right)=4 i-3\), for all \(i=1,2,3,4\),
\(f\left(v_{5}\right)=4, f\left(v_{6}\right)=6\) and \(f\left(v_{7}\right)=11(\) see Figure \(3(b))\). It is certain that the collection \(\psi_{f_{1}}=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}\right),\left(v_{5}, v_{2}, v_{6}\right),\left(v_{3}, v_{7}\right)\right\}\) is not an acyclic graphoidal decomposition of \(G\) as the vertex \(v_{2}\) is an internal vertex in two paths in \(\psi_{f_{1}}\). Hence the difference labeling \(f_{1}\) of \(G\) is not a \(\mathcal{G D} \mathcal{L}\) of \(G\).

Theorem 2.3. Every graph admits a \(\mathcal{G D L}\).
Proof. Let \(G\) be a graph on \(n\) vertices with \(V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\). Define \(f: V(G) \rightarrow N \cup\{0\}\) by \(f\left(v_{i}\right)=2^{i}\), for all \(i=1,2, \ldots, n\). We prove that \(\psi_{f}(G)=E(G)\). For this it is enough to prove that different edges receive different weights under the weight function \(f^{*}\) on \(E(G)\). Suppose \(e=v_{i} v_{j}\) and \(e^{\prime}=v_{k} v_{l}\) are edges of \(G\) such that \(w_{f}(e)=w_{f}\left(e^{\prime}\right)\). Assume without loss of generality that \(i>j\) and \(k>l\). So, \(w_{f}(e)=w_{f}\left(e^{\prime}\right)\) implies that
\[
\begin{equation*}
2^{i}-2^{j}=2^{k}-2^{l} \tag{1}
\end{equation*}
\]

Then \(2^{j}\left(2^{i-j}-1\right)=2^{l}\left(2^{k-l}-1\right)\). As \(2^{l}\) divides \(2^{l}\left(2^{k-l}-1\right)\), it follows that \(2^{l}\) divides \(2^{j}\left(2^{i-j}-1\right)\). This implies that \(2^{l}\) divides \(2^{j}\) as \(\left(2^{l}, 2^{i-j}-1\right)=1\). In a similar way, we can prove that \(2^{j}\) divides \(2^{l}\). Hence \(j=l\). Therefore, the equation (1) now implies that \(i=k\) and thus \(e=e^{\prime}\). So, different edges receive different weights which in turn implies that \(\psi_{f}=E(G)\), which is obviously an acyclic graphoidal decomposition of \(G\). Therefore \(f\) is a \(\mathcal{G D L}\) of \(G\).

As proved in Theorem 2.3, every graph has at least one \(\mathcal{G D \mathcal { L }}\). Indeed, a graph can have infinitely many graphoidal difference labelings as shown below.

Theorem 2.4. Every graph admits infinitely many graphoidal difference labelings.

Proof. Suppose \(f\) is a \(\mathcal{G} \mathcal{D}\) of a graph \(G\) of size \(m\) (Note that the existence of a \(\mathcal{G D} \mathcal{L}\) is guaranteed in view of Theorem 2.3). Consider the difference labelings \(f_{1}, f_{2}\) and \(f_{3}\) of \(G\) that are defined as follows.
(i) For a positive integer \(k\), define \(f_{1}(u)=f(u)+k\), for all \(u \in V(G)\).
(ii) Define \(f_{2}(u)=f(u)-m\), for all \(u \in V(G)\), where \(m=\operatorname{Min}\{f(x)\) : \(x \in V(G)\}\).
(iii) Define \(f_{3}(u)=M-f(u)\), for all \(u \in V(G)\), where \(M=\operatorname{Max}\{f(w)\) : \(w \in V(G)\}\).

Certainly, for any edge \(e=u v\), we have \(\left|f_{1}(u)-f_{1}(v)\right|=|f(u)-f(v)|\) and so \(\psi_{f}=\psi_{f_{1}}\). As \(f\) is a \(\mathcal{G D L}, \psi_{f}\) is an acyclic graphoidal decomposition of \(G\) and so is \(\psi_{f_{1}}\). Therefore \(f_{1}\) is a \(\mathcal{G D} \mathcal{L}\). Note that \(f_{1}\) is different from \(f\). In a similar way, one can prove that both \(f_{2}\) and \(f_{3}\) are graphoidal difference labelings of \(G\) distinct from \(f\) and \(f_{1}\). Thus infinitely many \(\mathcal{G D} \mathcal{L}\) can be constructed from a \(\mathcal{G D L}\) of \(G\).

\section*{3. The parameter \(\eta_{\mathbf{d}}\)}

We have observed in Theorem 2.4 that there are infinitely many \(\mathcal{G D} \mathcal{L} s\) for a graph. But one can note that all the \(\mathcal{G D L} s\) for a graph \(G\) provided in the proof of Theorem 2.4 give raise to the same \(\mathcal{D L G D}\). This is not the case always. Indeed a graph may admit many graphoidal difference labelings such that the respective \(\mathcal{D} \mathcal{L G D}\) s induced by them are of different cardinalities. For example,


Figure 4. A graph with two \(\mathcal{D} \mathcal{L G D}\) s of different cardinalities.
for the graph \(G\) of Figure 4, consider the difference labelings \(f_{1}\) and \(f_{2}\) defined by \(f_{1}\left(v_{1}\right)=2, f_{1}\left(v_{2}\right)=5, f_{1}\left(v_{3}\right)=3, f_{1}\left(v_{4}\right)=1, f_{1}\left(v_{5}\right)=8, f_{1}\left(v_{6}\right)=4\) and \(f_{2}\left(v_{1}\right)=4, f_{2}\left(v_{2}\right)=7, f_{2}\left(v_{3}\right)=6, f_{2}\left(v_{4}\right)=2, f_{2}\left(v_{5}\right)=15, f_{2}\left(v_{6}\right)=5\). Then
\[
\begin{aligned}
& \psi_{f_{1}}=\left\{\left(v_{4}, v_{1}, v_{3}, v_{6}\right),\left(v_{1}, v_{2}, v_{5}\right),\left(v_{2}, v_{3}\right)\right\} \text { and } \\
& \psi_{f_{2}}=\left\{\left(v_{4}, v_{1}, v_{3}\right),\left(v_{6}, v_{3}, v_{2}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{5}\right)\right\}
\end{aligned}
\]

Clearly, both \(\psi_{f_{1}}\) and \(\psi_{f_{2}}\) are distinct acyclic graphoidal decompositions and so \(f_{1}\) and \(f_{2}\) are \(\mathcal{G D} \mathcal{L}\). Note that \(\left|\psi_{f_{1}}\right| \neq\left|\psi_{f_{2}}\right|\).

While it is possible for a graph to have more than one \(\mathcal{D L G D}\) s of different cardinalities, it would be interesting to study the \(\mathcal{D \mathcal { L C D }}\) of minimum cardinality for a graph \(G\). Motivated by this we define the notion of difference label graphoidal decomposition number of a graph.

Definition 3.1. The difference label graphoidal decomposition number \(\eta_{d}(G)\) of a graph \(G\) is defined to be the minimum cardinality of \(\psi_{f}\) where the minimum is taken over all possible graphoidal difference labeling \(f\) of \(G\). That is,
\[
\eta_{d}(G)=\operatorname{Min}\left\{\left|\psi_{f}\right|: f \text { is a } \mathcal{G D \mathcal { L }} \text { of } G\right\}
\]
where \(\left|\psi_{f}\right|\) denotes the cardinality of \(\psi_{f}\).
Example 3.2. (i). Consider the graph \(G\) given in Figure 5. Define \(f\) by \(f\left(v_{1}\right)=1, f\left(v_{2}\right)=3, f\left(v_{3}\right)=5, f\left(v_{4}\right)=7, f\left(v_{5}\right)=9\) and \(f\left(v_{6}\right)=2\). Then \(\psi_{f}=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right),\left(v_{1}, v_{6}, v_{2}\right),\left(v_{3}, v_{5}\right)\right\}\) is a \(\mathcal{D L G D}\) of \(G\).

Hence \(\eta_{d}(G) \leq 3\). Since, any \(\mathcal{D} \mathcal{L G D}\) is also an acyclic graphoidal decomposition and an acyclic graphoidal decomposition must have at least 3 paths it follows that \(\eta_{d}(G) \geq 3\). Thus \(\eta_{d}(G)=3\).


Figure 5. A graph G with \(\eta_{d}(G)=3\).
(ii). For a path \(P_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)\) on \(n\) vertices, the difference labeling \(f\) defined by \(f\left(v_{i}\right)=i\), for each \(i \in\{1,2, \ldots, n\}\) is a \(\mathcal{G D} \mathcal{L}\) with \(\psi_{f}=\) \(\left\{\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\}\) so that \(\eta_{d}\left(P_{n}\right)=1\).
(iii). For a cycle \(C_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)\), if \(f\) is defined by \(f\left(v_{i}\right)=i\), for each \(i \in\{1,2, \ldots, n\}\), then \(\psi_{f}=\left\{\left(v_{1}, v_{2}, \ldots, v_{n}\right),\left(v_{1}, v_{n}\right)\right\}\) which is obviously an acyclic graphoidal decomposition of \(C_{n}\) so that \(\eta_{d}\left(C_{n}\right) \leq 2\). Further at least two paths are required in order to cover the edges of \(C_{n}\) so that \(\eta_{d}\left(C_{n}\right)=2\).

Let us now proceed to obtain a bound for \(\eta_{d}\) in terms of order and size which will be more helpful in dertermining \(\eta_{d}\) for several families of graphs. To start with, we prove the following lemmas.

Lemma 3.3. For a \(\mathcal{G D} \mathcal{L} f\) of a graph \(G\), let \(t_{\psi_{f}}\) denote the number of exterior vertices to \(\psi_{f}\) and let \(t=\min _{f} t_{\psi_{f}}\). Then \(\eta_{d}(G)=m-n+t\).
Proof. Let \(f\) be any \(\mathcal{G D} \mathcal{L}\) of \(G\) and let \(\psi_{f}\) be the \(\mathcal{D} \mathcal{L G D}\) of \(G\) induced by \(f\). Then
\[
\begin{aligned}
m & =\sum_{P \in \psi_{f}}|E(P)| \\
& =\sum_{P \in \psi_{f}}(i(P)+1), \text { where } i(P) \text { is the number of internal } \\
& =\sum_{P \in \psi_{f}} i(P)+\left|\psi_{f}\right| \quad \text { vertices of } P .
\end{aligned}
\]

Therefore, \(\left|\psi_{f}\right|=m-\sum_{P \in \psi_{f}} i(P)\). Now, since \(\psi_{f}\) is an acyclic graphoidal decomposition of \(G\), every vertex of \(G\) is either an exterior vertex to \(\psi_{f}\) or
an internal vertex of exactly one path in \(\psi_{f}\) and so \(n=t_{\psi_{f}}+\sum_{P \in \psi_{f}} i(P)\).
Hence \(\left|\psi_{f}\right|=m-n+t_{\psi_{f}}\). Thus \(\eta_{d}(G)=\min _{f}\left\{\left|\psi_{f}\right|\right\}=(m-n)+\min _{f}\left\{t_{\psi_{f}}\right\}=\) \(m-n+t\).

Lemma 3.4. Let \(G\) be a graph and let \(f\) be any \(\mathcal{G D} \mathcal{L}\) of \(G\). Then the vertices with maximum and minimum labels with respect to \(f\) are exterior to \(\psi_{f}\).

Proof. Let \(u\) be the vertex of \(G\) with minimum label under \(f\). Suppose \(u\) is an internal vertex of a path \(P\) in \(\psi_{f}\). Let \(x\) and \(y\) be the vertices on \(P\) that are adjacent to the vertex \(u\). Therefore \(|f(u)-f(x)|=|f(u)-f(y)|\). As \(f(u)\) is minimum, \(f(x)>f(u)\) and \(f(y)>f(u)\). So, the above equation implies that \(f(x)-f(u)=f(y)-f(u)\) and so \(f(x)=f(y)\), a contradiction. Hence the vertex \(u\) cannot be an internal vertex of any path in \(\psi_{f}\). That is, \(u\) is exterior to \(\psi_{f}\). In a similar way, we can prove that \(v\) is also exterior to \(\psi_{f}\).

As a consequence of the above two lemmas, we now obtain a bound for \(\eta_{d}\) in terms of order and size of \(G\).

Theorem 3.5. For any graph \(G\), we have \(\eta_{d}(G) \geq m-n+2\). Further, the equality holds if and only if there exists a \(\mathcal{D} \mathcal{L G D} \psi_{f}\) induced by a difference labeling \(f\) such that all the vertices other than the vertices with maximum and minimum labels under \(f\) are interior to \(\psi_{f}\).

Proof. For any \(\mathcal{G} \mathcal{D} \mathcal{L} f\) of \(G\), by Lemma 3.4, at least two vertices of \(G\) would be exterior to \(\psi_{f}\) so that \(t_{\psi_{f}} \geq 2\). Hence \(t \geq 2\) and so Lemma 3.3 implies that \(\eta_{d}(G) \geq m-n+2\). Now, suppose \(\eta_{d}(G)=m-n+2\). By Lemma 3.3, \(t=2\). That is, there is a difference labeling \(f\) of \(G\) such that exactly two vertices of \(G\) are exterior to \(\psi_{f}\). Now, in view of Lemma 3.4, those two exterior vertices are the vertices with minimum and maximum labels under \(f\). Conversely, if there is a difference labeling \(f\) with the given property, then \(t \leq 2\) so that \(\eta_{d}(G)=m-n+t \leq m-n+2\). The other inequality is always true and thus \(\eta_{d}(G)=m-n+2\).

Corollary 3.6. \(A \mathcal{D} \mathcal{L G D} \psi_{f}\) of a graph \(G\) with the property that all the vertices other than the vertices with maximum and minimum labels under \(f\) are interior to \(\psi_{f}\), is a minimum \(\mathcal{D} \mathcal{L G D}\).

Proof. Follows from Theorem 3.5.
The Corollary 3.6 will be very useful to determine the value of \(\eta_{d}\) for several graphs. For example, \(\eta_{d}\) for the Petersen graph is determined with the aid of the corollary.

Example 3.7. For the Petersen graph \(G, \eta_{d}(G)=7\).

Proof. Let the vertices of the Petersen graph \(G\) be labeled as in Figure 6. Then the labeling \(f\) on \(G\) defined by \(f\left(v_{i}\right)=i\), for all \(i\), is a \(\mathcal{G D} \mathcal{L}\) as \(\psi_{f}=\) \(\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right),\left(v_{5}, v_{1}\right),\left(v_{1}, v_{9}\right),\left(v_{2}, v_{7}\right),\left(v_{6}, v_{10}\right),\left(v_{3}, v_{10}\right)\right.\), \(\left.\left(v_{4}, v_{8}\right)\right\}\) is an acyclic graphoidal decomposition of \(G\). Certainly, \(v_{1}\) and \(v_{10}\) are the vertices with minimum and maximum labels and they are the only vertices exterior to \(\psi_{f}\). Therefore, by Corollary \(3.6, \psi_{f}\) is a minimum \(\mathcal{D} \mathcal{L G D}\) of \(G\) so that \(\eta_{d}(G)=\left|\psi_{f}\right|=7\).


Figure 6. The Petersen graph.
Let us now proceed to determine the value of \(\eta_{d}\) for some common classes of graphs. For this purpose we prove the following lemma.

Lemma 3.8. For any graph \(G\), we have \(\eta_{d}(G) \leq m-l+1\), where \(l\) is the length of a longest path. Further, the bound is sharp.

Proof. Let \(V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\). Let \(P\) be a longest path in \(G\), say \(P=\) \(\left(v_{1}, v_{2}, \ldots, v_{l+1}\right)\). Now, define a difference labeling \(f\) on \(G\) by
\[
f\left(v_{i}\right)=\left\{\begin{array}{l}
i \quad \text { if } 1 \leq i \leq l+1 \\
2^{i} \quad \text { elsewhere }
\end{array}\right.
\]

As discussed in the proof of Theorem 2.3, \(\left|2^{i}-2^{j}\right| \neq\left|2^{k}-2^{l}\right|\) when \(i, j, k\) and \(l\) are distinct integers greater than \(l+1\). That is, no two edges of \(G\) lying outside \(P\) have the same weight. Further, if \(v_{i}\) is a vertex lying outside \(P\)


Figure 7. A graph G with \(\eta_{d}(G)=m-l+1\).
adjacent to a vertex \(v_{j}\) that lies on \(P\), then \(i>l+1\) and \(1<j<l+1\). So, \(w_{f}\left(v_{i} v_{j}\right)=\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right|=\left|2^{i}-j\right|=2^{i}-j\). Certainly, \(2^{i}-j\) is neither 1 nor
\(\left|2^{r}-2^{s}\right|\), for any \(r, s>l+1\). Hence \(\psi_{f}=\{P\} \cup(E(G)-E(P))\), which is an acyclic graphoidal decomposition of \(G\) and hence \(\psi_{f}\) is a \(\mathcal{D} \mathcal{L G D}\) of \(G\). Thus \(\eta_{d}(G) \leq\left|\psi_{f}\right|=m-l+1\). For the sharpness of the bound, consider the graph \(G\) given in Figure 7. Here, \(m=8\) and \(l=7\). Define \(f\) by \(f\left(v_{i}\right)=i\) for all i. Then \(\psi_{f}=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right),\left(v_{4}, v_{6}\right)\right\}\) is a minimum \(\mathcal{D} \mathcal{L G D}\) of \(G\). Hence \(\eta_{d}(G)=m-l+1=2\).

With the aid of Lemma 3.8 we determine \(\eta_{d}\) for Hamiltonian graphs and in particular for complete graphs and wheels.

Theorem 3.9. For a Hamiltonian graph \(G\), \(\eta_{d}(G)=m-n+2\).
Proof. As \(G\) is Hamiltonian, the length \(l\) of a detour path is \(n-1\) and so by Lemma 3.8 we have \(\eta_{d}(G) \leq m-n+2\). The other inequality is always true as seen in Theorem 3.5. Thus \(\eta_{d}(G)=m-n+2\).

Corollary 3.10. (i) For a complete graph \(K_{n}\), where \(n \geq 2\), \(\eta_{d}\left(K_{n}\right)=\frac{n^{2}-3 n+4}{2}\).
(ii) For a wheel \(W_{n}\), where \(n \geq 4, \eta_{d}\left(W_{n}\right)=n\).

Proof. As \(K_{n}\) and \(W_{n}\) are Hamiltonian, the result follows from Theorem 3.9.

In the following theorems, we determine the value of \(\eta_{d}\) for trees and complete bipartite graphs.
Theorem 3.11. For a tree \(T, \eta_{d}(T)=n-1\), where \(n\) is the number of pendant vertices in \(T\).

Proof. It has been proved in [10] that every minimum acyclic graphoidal decomposition of a tree \(T\) can be realized as a \(\mathcal{D} \mathcal{L G D} \psi_{f}\) by a suitable difference labeling \(f\) of \(T\) so that \(\eta_{d}(T)=\eta_{a}(T)\). Now Theorem 1.3 completes the proof.

Theorem 3.12. Let \(r\) and \(s\) be positive integers with \(r \leq s\). Then
\[
\eta_{d}\left(K_{r, s}\right)= \begin{cases}s-1 & \text { if } r=1 \\ r(s-1)-r+2 & \text { if } r \geq 2 \text { and } s \leq r C_{2}+2 \\ r(s-1)-r C_{2} & \text { if } r \geq 2 \text { and } s>r C_{2}+2\end{cases}
\]
where \(r C_{2}=\frac{r(r-1)}{2}\).
Proof. Let \(X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}\) and \(Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}\) be the bipartition of \(K_{r, s}\). If \(r=1\), then \(K_{1, s}\) is the star with \(s\) pendant vertices and so it follows from Theorem 3.11 that \(\eta_{d}\left(K_{1, s}\right)=s-1\). Assume \(r \geq 2\).

Case 1. \(s \leq r C_{2}+2\).
Define \(f\) on \(V\left(K_{r, s}\right)\) by \(f\left(x_{1}\right)=4, f\left(x_{2}\right)=10, f\left(y_{1}\right)=1, f\left(y_{2}\right)=7\), \(f\left(y_{3}\right)=13\),
\[
\begin{aligned}
& f\left(y_{i+3}\right)=3 f\left(y_{i+2}\right)-8: i=1,2,3, \ldots, r-2 \\
& f\left(x_{i+2}\right)=2 f\left(y_{i+2}\right)-4: i=1,2,3, \ldots, r-2 \text { and } \\
& f\left(y_{t}\right)=\frac{f\left(x_{j+1}\right)+f\left(x_{i+j+1}\right)}{2}: 1 \leq j \leq r-2,1 \leq i \leq r-j-1,
\end{aligned}
\]
where \(t=j r-\frac{(j-1)(j+2)}{2}+1+i\). Now, it is not difficult to verify that the collection \(\psi_{f}\) induced by \(f\) is given by \(\psi_{f}=\left\{P_{(1)}, Q_{(1)}, Q_{(2)}, \ldots, Q_{(r-2)}\right\} \cup\left\{R_{(i)}^{j}\right.\) : \(1 \leq j \leq r-2\) and \(1 \leq i \leq r-j-1\} \cup X\), where
\[
\begin{aligned}
P_{(1)} & =\left(y_{1}, x_{1}, y_{2}, x_{2}, y_{3}\right) \\
Q_{(i)} & =\left(x_{1}, y_{i+2}, x_{i+2}, y_{i+3}\right) \\
R_{(i)}^{j} & =\left(x_{j+1}, y_{t}, x_{(i+j+1)}\right) \text { and }
\end{aligned}
\]
\(X\) is the set of all edges of \(K_{r, s}\) not covered by the above paths in \(\psi_{f}\), is \(\mathcal{D} \mathcal{L G D}\) of \(K_{r, s}\). Clearly, all the vertices of \(K_{r, s}\) other than the vertices \(y_{1}\) and \(y_{r+1}\) with minimum and maximum labels respectively, are interior to \(\psi_{f}\) so that by Corollary \(3.6, \psi_{f}\) is a minimum \(\mathcal{D} \mathcal{L G D}\) of \(K_{r, s}\). Hence, by Theorem 3.5, \(\eta_{d}\left(K_{r, s}\right)=r s-(r+s)+2\).
Case 2. \(s>r C_{2}+2\).
In this case, we define a difference labeling \(f_{1}\) on \(V\left(K_{r, s}\right)\) using the labeling \(f\) defined in the Case 1 as follows. Let
\[
\begin{aligned}
& f_{1}\left(x_{i}\right)=f\left(x_{i}\right): i=1,2,3, \ldots, r \\
& f_{1}\left(y_{i}\right)=f\left(y_{i}\right): i=1,2,3, \ldots, r C_{2}+2 \text { and } \\
& f_{1}\left(y_{i}\right)=f\left(y_{r+1}\right)+i \quad: i=r C_{2}+3, r C_{2}+4, \ldots, s
\end{aligned}
\]

Then \(\psi_{f_{1}}=\psi_{f} \cup X_{1}\), where \(X_{1}\) is the set of all edges not covered by the paths in \(\psi_{f}\), is a \(\mathcal{D L G D}\) of \(K_{r, s}\) with \(\left|\psi_{f_{1}}\right|=\left|\psi_{f}\right|+\left|X_{1}\right|=\left(1+(r-2)+\frac{(r-2)(r-1)}{2}\right)+(r s-\) \(\left.\left(4+3(r-2)+2 \frac{(r-2)(r-1)}{2}\right)\right)=\left(r-1+\frac{(r-2)(r-1)}{2}\right)+\left(r s-\left(4+3 r-6+r^{2}-3 r+2\right)\right)=\) \(\frac{r(r-1)}{2}+\left(r s-r^{2}\right)=\frac{2 r s-r^{2}-r}{2}=r(s-1)-r C_{2}\). Hence \(\eta_{d}\left(K_{r, s}\right) \leq r(s-1)-r C_{2}\). Further, let \(g\) be any \(\mathcal{G D \mathcal { L }}\) of \(K_{r, s}\). Then, for a vertex \(y_{i} \in Y\) that is interior to \(\psi_{g}\), there corresponds a pair of vertices in \(X\) and hence at most \(r C_{2}\) vertices of \(K_{r, s}\) belonging to \(Y\) can be interior to \(\psi_{g}\) which implies that at least \(s-r C_{2}\) vertices of \(K_{r, s}\) are exterior to \(\psi_{g}\) so that \(t \geq s-r C_{2}\). Hence, by Lemma 3.3, we have \(\eta_{d}\left(K_{r, s}\right) \geq r s-(r+s)+s-r C_{2}=r(s-1)-r C_{2}\).

The \(\mathcal{G D L} f\) for \(K_{r, s}\) defined in the above theorem and the respective \(\mathcal{D} \mathcal{L G D}\) \(\psi_{f}\) are illustrated in the following example.

Example 3.13. For the complete bipartite graph \(K_{4,8}\) with bipartition \(X=\) \(\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\) and \(Y=\left\{y_{i}: 1 \leq i \leq 8\right\}\), the \(\mathcal{G D} \mathcal{L} f\) defined in the proof of Theorem 3.12 is given by \(f\left(x_{1}\right)=4, f\left(x_{2}\right)=10, f\left(x_{3}\right)=22, f\left(x_{4}\right)=58\), \(f\left(y_{1}\right)=1, f\left(y_{2}\right)=7, f\left(y_{3}\right)=13, f\left(y_{4}\right)=31, f\left(y_{5}\right)=85, f\left(y_{6}\right)=16\),
\(f\left(y_{7}\right)=34\) and \(f\left(y_{8}\right)=40\). Further, the \(\mathcal{D L G D} \psi_{f}\) of \(K_{4,6}\) is given by \(\psi_{f}=\) \(\left\{P_{(1)}, Q_{(1)}, Q_{(2)}, R_{(1)}^{1}, R_{(2)}^{1}, R_{(1)}^{2}\right\} \cup X\), where
\[
\begin{aligned}
& P_{(1)}=\left(y_{1}, x_{1}, y_{2}, x_{2}, y_{3}\right) \\
& Q_{(1)}=\left(x_{1}, y_{3}, x_{3}, y_{4}\right) \\
& Q_{(2)}=\left(x_{1}, y_{4}, x_{4}, y_{5}\right) \\
& R_{(1)}^{1}=\left(x_{2}, y_{6}, x_{3}\right) \\
& R_{(2)}^{1}=\left(x_{2}, y_{7}, x_{4}\right) \\
& R_{(1)}^{2}=\left(x_{3}, y_{8}, x_{4}\right)
\end{aligned}
\]
and \(X\) is the set of all edges of \(K_{4,6}\) not covered by the above paths. Further, for the complete bipartite graph \(K_{4,12}\) with bipartition \(X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\) and \(Y=\left\{y_{i}: 1 \leq i \leq 12\right\}\), the \(\mathcal{G D L} f_{1}\) is given by \(f_{1}\left(x_{i}\right)=f\left(x_{i}\right)\), for all \(i \in\{1,2,3,4\}\) and for each \(i \in\{1,2, \ldots, 8\}, f_{1}\left(y_{i}\right)=f\left(y_{i}\right), f_{1}\left(y_{9}\right)=94\), \(f_{1}\left(y_{10}\right)=95, f_{1}\left(y_{11}\right)=96\) and \(f_{1}\left(y_{12}\right)=97\). The \(\mathcal{D L G D} \psi_{f_{1}}\) of \(K_{4,12}\) is given by \(\psi_{f_{1}}=\psi_{f} \cup X_{1}\), where \(X_{1}\) is the set of all edges of \(K_{4,12}\) not covered by the paths in \(\psi_{f}\).

\section*{4. Relation between \(\eta_{\mathbf{d}}\) And \(\eta_{\mathrm{a}}\)}

In this section, we discuss the relationship of \(\eta_{d}\) with the acyclic graphoidal decomposition number \(\eta_{a}\). Certainly, \(\eta_{a}(G) \leq \eta_{d}(G)\) as every difference label graphoidal decomposition of \(G\) is an acyclic path decomposition of \(G\). The following theorem shows that the absolute difference between the parameters \(\eta_{d}\) and \(\eta_{a}\) can be made arbitrarily large.

Theorem 4.1. For a given positive integer \(k\), there exists a graph \(G\) such that \(\eta_{d}(G)-\eta_{a}(G)=k\).

Proof. Consider a path \(P\) on \(5 k\) vertices, say \(P=\left(v_{1}, v_{2}, \ldots, v_{5 k}\right)\). Introduce \(k\) vertices namely \(w_{1}, w_{2}, \ldots, w_{k}\). Join the vertex \(w_{i}\) to the vertices \(v_{5 i-3}\) and \(v_{5 i-1}\) for each \(i \in\{1,2, \ldots, k\}\). Let \(G\) be the resultant graph(see Figure 8). We prove that \(\eta_{d}(G)=2 k+1\) and \(\eta_{a}(G)=k+1\). It is clear that \(\psi_{a}=\) \(\{P\} \cup\left\{\left(v_{5 i-3}, w_{i}, v_{5 i-1}\right): 1 \leq i \leq k\right\}\) is an acyclic graphoidal decomposition of \(G\) such that every vertex of \(G\) with degree at least two is interior to \(\psi_{a}\) so that by Theorem 1.2, \(\psi_{a}\) is a minimum acyclic graphoidal decomposition of \(G\). Hence \(\eta_{a}(G)=\left|\psi_{a}\right|=k+1\).

We next prove that \(\eta_{d}(G)=2 k+1\). For this consider the difference labeling \(f\) defined by \(f\left(v_{i}\right)=i\), for all \(i=1,2,3, \ldots, 5 k\) and \(f\left(w_{j}\right)=5 k+j\), for each \(j=1,2,3, \ldots, k\). Now, for each \(i \in\{1,2, \ldots, 5 k-1\}\), the weight of the edge \(v_{i} v_{i+1}\) is given by \(w_{f}\left(v_{i} v_{i+1}\right)=\left|f\left(v_{i}\right)-f\left(v_{i+1}\right)\right|=|i-(i+1)|=1\). Further, for each \(i \in\{1,2, \ldots, k\}\), the weight of the edge \(v_{5 i-3} w_{i}\) is given by \(w_{f}\left(v_{5 i-3} w_{i}\right)=\left|f\left(v_{5 i-3}\right)-f\left(w_{i}\right)\right|=|(5 i-3)-(5 k+i)|=|4 i-3-5 k|\) and the weight of the edge \(w_{i} v_{5 i-1}\) is \(w_{f}\left(w_{i} v_{5 i-1}\right)=\left|f\left(w_{i}\right)-f\left(v_{5 i-1}\right)\right|=\mid(5 k+\)
\(i)-(5 i-1)\left|=|5 k-4 i+1|\right.\). We need to verify that \(w_{f}\left(v_{5 i-3} w_{i}\right) \neq w_{f}\left(w_{i} v_{5 i-1}\right)\), for all \(i=1,2, \ldots, k\). Suppose \(w_{f}\left(v_{5 i-3} w_{i}\right)=w_{f}\left(w_{i} v_{5 i-1}\right)\), for at least one \(i\). Then \(|4 i-3-5 k|=|5 k-4 i+1|\). If both \(4 i-3-5 k\) and \(5 k-4 i+1\) are positive, then \(4 i-3-5 k=5 k-4 i+1\) so that \(5 i-2=5 k+i\) which implies that \(f\left(v_{5 i-2}\right)=f\left(w_{i}\right)\), a contradiction. Similarly, one can prove the other cases. Therefore, \(w_{f}\left(v_{5 i-3} w_{i}\right) \neq w_{f}\left(w_{i} v_{5 i-1}\right)\), for all \(i=1,2, \ldots, k\). Also, \(w_{f}\left(v_{5 i-3} w_{i}\right) \neq 1\) and \(w_{f}\left(w_{i} v_{5 i-1}\right) \neq 1\). Hence \(\psi_{f}=\{P\} \cup\left\{\left(v_{5 i-3}, w_{i}\right): 1 \leq\right.\) \(i \leq k\} \cup\left\{\left(v_{5 i-1}, w_{i}\right): 1 \leq i \leq k\right\}\), which is certainly an acyclic graphoidal decomposition of \(G\) so that \(f\) is \(\mathcal{G D} \mathcal{L}\) of \(G\) and hence \(\eta_{d}(G) \leq\left|\psi_{f}\right|=2 k+1\).


Figure 8. A graph G with \(\eta_{d}(G)-\eta_{a}(G)=k\).

Further, for any \(\mathcal{D} \mathcal{L G D} \psi_{g}\) of \(G\), at least one vertex lying on the cycle \(C_{(i)}=\left(v_{5 i-3}, v_{5 i-2}, v_{5 i-1}, w_{i}, v_{5 i-3}\right)\), for all \(i=1,2, \ldots, k\), is exterior to \(\psi_{g}\). On the contrary, suppose all the vertices of the cycle \(C_{(j)}=\left(v_{5 j-3}, v_{5 j-2}, v_{5 j-1}, w_{j}\right.\), \(\left.v_{5 j-3}\right)\), for some \(j \in\{1,2, \ldots, k\}\), are interior to \(\psi_{g}\). Then the path \(\left(v_{5 j-3}, w_{j}\right.\), \(v_{5 j-1}\) ) would be a section of the path in \(\psi_{g}\) having \(w_{j}\) as an internal vertex. So \(\left|g\left(v_{5 j-3}\right)-g\left(w_{j}\right)\right|=\left|g\left(v_{5 j-1}\right)-g\left(w_{j}\right)\right|\). Now, if for instance \(g\left(v_{5 j-3}\right)<\) \(g\left(v_{5 j-2}\right)<g\left(v_{5 j-1}\right)\) and \(g\left(v_{5 j-3}\right)<g\left(w_{j}\right)<g\left(v_{5 j-1}\right)\), then \(g\left(w_{j}\right)=\) \(\frac{g\left(v_{5 j-1}\right)+g\left(v_{5 j-3}\right)}{2}=g\left(v_{5 j-2}\right)\), a contradiction. In a similar way, the remaining cases can be discussed. Hence, for any \(\mathcal{D} \mathcal{L G D} \psi_{g}\) of \(G\), the two pendant vertices of \(G\) and at least \(k\) vertices of degree greater than one of \(G\) are exterior to \(\psi_{g}\) and so \(t \geq k+2\). By Lemma 3.3, \(\eta_{d}(G) \geq(7 k-1)-6 k+(k+2)=2 k+1\). Therefore \(\eta_{d}(G)=2 k+1\). Hence \(\eta_{d}(G)-\eta_{a}(G)=k\).

Even if the above theorem asserts that the absolute difference between the parameters \(\eta_{d}\) and \(\eta_{a}\) can be made arbitrarily large, they do not assume arbitrary values. That is, given positive integers \(a\) and \(b\) with \(a \leq b\), it is not always possible to find a graph \(G\) for which \(\eta_{a}(G)=a\) and \(\eta_{d}(G)=b\). For example, when \(\eta_{a}(G)=1, G\) is a path to which the value of \(\eta_{d}(G)\) is also 1 . In this connection we pose the following conjecture.

Conjecture 4.2. For any graph \(G, \eta_{d}(G) \leq 2 \eta_{a}(G)-1\).
We find some classes of graphs that support the Conjecture 4.2. For example, the common classes of graphs such as complete graphs, complete bipartite
graphs, wheels and trees support the Conjecture 4.2 as shown below. For the value of \(\eta_{a}\) to these common class graphs, one may refer to [4].

Theorem 4.3. Complete bipartite graphs, complete graphs, wheels and trees support the Conjecture 4.2.

Proof. For a tree \(T\), by Theorem 3.11 that \(\eta_{d}(T)=n-1\), where \(n\) is the number of pendant vertices of \(T\). By Theorem \(1.3, \eta_{a}(T)=n-1\) and so \(\eta_{d}(T)=\eta_{a}(T)\). Now, for a wheel \(W_{n}\) on \(n\) vertices, \(\eta_{a}\left(W_{n}\right)=n-2\) and by Corollary 3.10, \(\eta_{d}\left(W_{n}\right)=n\). Hence \(\eta_{d}\left(W_{n}\right) \leq 2 \eta_{a}\left(W_{n}\right)-1\). For a complete graph \(K_{n}, \eta_{a}\left(K_{n}\right)=\frac{n^{2}-3 n}{2}\) and by Corollary 3.10, \(\eta_{d}\left(K_{n}\right)=\frac{n^{2}-3 n+4}{2}\). Hence \(\eta_{d}\left(K_{n}\right) \leq 2 \eta_{a}\left(K_{n}\right)-1\). Again one can verify from Theorem 3.12 and Theorem 1.4 that complete bipartite graphs support the Conjecture 4.2.

We conclude this section with the following realization theorem in connection with the Conjecture 4.2

Theorem 4.4. For any two positive integers \(a\) and \(b\) with \(1<a \leq b \leq 2 a-1\), there exists a graph \(G\) for which \(\eta_{a}(G)=a\) and \(\eta_{d}(G)=b\).

Proof. Suppose \(a\) and \(b\) are two positive integers with \(1<a \leq b \leq 2 a-1\). We construct a graph \(G\) with \(\eta_{a}(G)=a\) and \(\eta_{d}(G)=b\) as follows. Let \(b=a+r\), where \(0 \leq r \leq a-1\). Consider a path \(P=\left(v_{1}, v_{2}, \ldots, v_{2 a+r}\right)\) on \(2 a+r\) vertices. Introduce \(a-1\) vertices namely \(w_{1}, w_{2}, \ldots, w_{a-1}\). Now, join \(w_{i}\) to the vertices \(v_{3 i-1}\) and \(v_{3 i+1}\), for all \(i=1,2, \ldots, r\) and for each \(i \in\{r+1, r+2, \ldots, a-1\}\), join \(w_{i}\) to the vertices \(v_{2 i+r}\) and \(v_{2 i+r+1}\). Let \(G\) be the resultant graph. For \(a=6\) and \(b=8\), the graph \(G\) is given in the Figure 9. We prove that \(\eta_{a}(G)=a\) and \(\eta_{d}(G)=b\). It is clear that \(\psi_{1}=\{P\} \cup\left\{\left(v_{3 i-1}, w_{i}, v_{3 i+1}\right)\right.\) : \(1 \leq i \leq r\} \cup\left\{\left(v_{2 i+r}, w_{i}, v_{2 i+r+1}\right): r+1 \leq i \leq a-1\right\}\) is an acyclic graphoidal decomposition of \(G\) such that every vertex of \(G\) with degree at least two is interior to \(\psi_{a}\) so that by Theorem 1.2, \(\psi_{1}\) is a minimum acyclic graphoidal decomposition of \(G\) and hence \(\eta_{a}(G)=\left|\psi_{1}\right|=1+r+((a-1)-r)=a\). We now prove that \(\eta_{d}(G)=b\). For this consider the difference labeling \(f\) defined by
\[
\begin{array}{ll}
f\left(v_{i}\right)=2 i & : i=1,2, \ldots, 2 a+r \\
f\left(w_{i}\right)=2(2 a+r)+i & : i=1,2, \ldots, r \text { and } \\
f\left(w_{i}\right)=2 r+4 i+1 & : i=r+1, r+2, \ldots, a-1
\end{array}
\]

Now, for each \(i \in\{1,2, \ldots, 2 a+r-1\}\), the weight of the edge \(v_{i} v_{i+1}\) is given by \(w_{f}\left(v_{i} v_{i+1}\right)=\left|f\left(v_{i}\right)-f\left(v_{i+1}\right)\right|=|2 i-2(i+1)|=2\). Further, for each \(i \in\{r+1, r+2, \ldots, a-1\}\), the weight of the edge \(v_{2 i+r} w_{i}\) is given by \(w_{f}\left(v_{2 i+r} w_{i}\right)=\left|f\left(v_{2 i+r}\right)-f\left(w_{i}\right)\right|=|2(2 i+r)-(2 r+4 i+1)|=|-1|=1\) and the weight of the edge \(w_{i} v_{2 i+r+1}\) is given by \(w_{f}\left(w_{i} v_{2 i+r+1}\right)=\mid f\left(w_{i}\right)-\) \(f\left(v_{2 i+r+1}\right)\left|=|2 r+4 i+1-2(2 i+r+1)|=|-1|=1\right.\). Hence \(w_{f}\left(v_{2 i+r} w_{i}\right)=\)
\(w_{f}\left(w_{i} v_{2 i+r+1}\right)\), for all \(i \in\{r+1, r+2, \ldots, a-1\}\). Now, the weight of the edge \(v_{3 i-1} w_{i}\), where \(1 \leq i \leq r\), is given by \(w_{f}\left(v_{3 i-1} w_{i}\right)=\left|f\left(v_{3 i-1}\right)-f\left(w_{i}\right)\right|=\) \(|2(3 i-1)-(2(2 a+r)+i)|=|5 i-4 a-2 r-2|\) and the weight of the edge \(w_{i} v_{3 i+1}\), where \(1 \leq i \leq r\), is \(w_{f}\left(w_{i}, v_{3 i+1}\right)=\left|f\left(w_{i}\right)-f\left(v_{3 i+1}\right)\right|=\mid(2(2 a+r)+\) i) \(-2(3 i+1)\left|=|4 a+2 r-5 i-2|\right.\). Also, it can be proved that \(w_{f}\left(v_{3 i-1} w_{i}\right) \neq\) \(w_{f}\left(w_{i} v_{3 i+1}\right)\), for all \(i=1,2, \ldots, r\). Hence, \(\psi_{f}=\{P\} \cup\left\{\left(v_{3 i-1}, w_{i}\right): 1 \leq i \leq\right.\) \(r\} \cup\left\{\left(w_{i}, v_{3 i+1}\right): 1 \leq i \leq r\right\} \cup\left\{\left(v_{2 i+r}, w_{i}, v_{2 i+r+1}\right): r+1 \leq i \leq a-1\right\}\), which is certainly an acyclic graphoidal decomposition of \(G\) so that \(f\) is \(\mathcal{G D} \mathcal{L}\) of \(G\) and hence \(\eta_{d}(G) \leq\left|\psi_{f}\right|=1+r+r+((a-1)-r)=a+r=b\).


Figure 9. A graph G with \(\eta_{a}(G)=6\) and \(\eta_{d}(G)=8\).

Further, let \(\psi_{g}\) be an arbitrary \(\mathcal{D} \mathcal{L G D}\) of \(G\). Suppose all the vertices of the cycle \(C_{(j)}=\left(v_{3 j-1}, v_{3 j}, v_{3 j+1}, w_{j}, v_{3 j-1}\right)\), for some \(j \in\{1,2, \ldots, r\}\), are interior to \(\psi_{g}\). Then the path \(\left(v_{3 j-1}, w_{j}, v_{3 j+1}\right)\) would be a section of the path in \(\psi_{g}\) with \(w_{j}\) as an internal vertex. So \(\left|g\left(w_{j}\right)-g\left(v_{3 j-1}\right)\right|=\left|g\left(v_{3 j+1}\right)-g\left(w_{j}\right)\right|\). Now, if \(g\left(v_{3 j-1}\right)<g\left(v_{3 j}\right)<g\left(v_{3 i+1}\right)\) and \(g\left(v_{3 j-1}\right)<g\left(w_{j}\right)<g\left(v_{3 i+1}\right)\) then \(g\left(w_{j}\right)=\) \(\frac{g\left(v_{3 j-1}\right)+g\left(v_{3 i+1}\right)}{2}=g\left(v_{3 j}\right)\), a contradiction. In a similar way, the remaining cases can be discussed. So, what we have proved is that at least one vertex lying on the cycle \(C_{(i)}=\left(v_{3 i-1}, v_{3 i}, v_{3 i+1}, w_{j}, v_{3 i-1}\right)\), for all \(i=1,2, \ldots, r\), is exterior to \(\psi_{g}\). Hence, for any \(\mathcal{D} \mathcal{L G D} \psi_{g}\), the two pendant vertices of \(G\) and at least \(r\) vertices of degree greater than one of \(G\) are exterior to \(\psi_{g}\) and so \(t \geq r+2\). By Lemma 3.3 that \(\eta_{d}(G) \geq(4 a+r-3)-(3 a+r-1)+(r+2)=a+r=b\). Hence \(\eta_{d}(G)=b\).

\section*{Acknowledgments}

The authors would like to thank the referee for useful and helpful comments and suggestions.

\section*{References}
1. B. D. Acharya, E. Sampathkumar, Graphoidal Covers and Graphoidal Covering Number of a Graph, Indian J. pure appl. Math., 18(10), (1987), 882-890.
2. S. Arumugam, I. Sahul Hamid, Simple Path Covers in a Graph, International J. Math. Combin., 3, (2008), 94-104.
3. S. Arumugam, I. Sahul Hamid, Label Graphoidal Covering Number of a Garph, Proceedings of the Group Discussion on Labeling of Discrete Structures and Applications, Mary Matha Arts College, Mananthawady, Eds. B.D. Acharya, S. Arumugam and A. Rosa; Narosa Publishing House, (2007), 77-82.
4. S. Arumugam, J. Suresh Suseela, Acyclic Graphoidal Covers and Path Partitions in a Graph, Discrete Math., 190, (1998), 67-77.
5. S. Arumugam, J. Suresh Suseela, Geodesic Graphoidal Covering Number of a Graph, Journal of the Indian Math. Soc., 72, (2005), 99-106.
6. G. S. Bloom, S. Ruiz, Decompositions into Linear Forests and Difference Labelings of Graphs, Discrete Applied Mathematics, 49, (1994), 61-75.
7. G. Chartrand, L. Lesniak, Graphs and Digraphs, Fourth Edition, CRC Press, Boca Raton, 2004.
8. F. Harary, Covering and Packing in Graphs I, Ann. N. Y. Acad. Sci., 175, (1970), 198-205.
9. F. Harary, A. J. Schwenk, Evolution of the Path Number of a Graph, Covering and Packing in Graphs II, Graph Theory and Computing, Ed. R. C. Road, Academic Press, New York, (1972), 39-45.
10. S. Meena, Studies in Graph Theory Factorizations and Decompositions of Graphs, Doctoral Thesis, Manonmaniam Sundaranar University, India, 1999.
11. I. Sahul Hamid, A. Anitha, On the Label Graphoidal Covering Number-I, Transaction on Combinatorics, 1(4), (2012), 25-33.
12. I. Sahul Hamid, A. Anitha, On the Label Graphoidal Covering Number-II, Discrete Mathematics, Algorithms and Applications, 3(1), (2011), 1-7.
13. M. T. Varela, On Barycentric-Magic Graphs, Iranian Journal of Mathematical Sciences and Informatics, 10(1), (2015), 121-129.
14. Wai-Chee Shiu, Gee-Choon Lau and Sin-Min Lee, On (semi-) Edge-primality of Graphs, Iranian Journal of Mathematical Sciences and Informatics, 12(2), (2017), 1-14.```

